Navigating the IIoT Landscape: Trends, Challenges, Opportunities

The Industrial Internet of Things (IIoT) is reshaping the industrial automation landscape, offering unprecedented connectivity and data-driven insights. In this post, I will explore the current and future trends driving the adoption of IIoT, the challenges organizations face in its implementation, and the abundant opportunities it presents for enhancing operational efficiency and unlocking new possibilities.

Trends in the IIoT

Several key trends are pushing industries toward a more connected and efficient future. Some of these trends include:

    • Greater adoption: IIoT is experiencing a wave in adoption across industries as organizations recognize its power to revolutionize operations, boost productivity, and enable smarter decision-making.
    • 5G optimization: The development of 5G networks promises to supercharge the IIoT by delivering ultra-low latency, high bandwidth, and reliable connectivity, empowering real-time data interpretation and response.
    • Increased flexibility: IIoT solutions are becoming more flexible, allowing seamless integration with existing infrastructure and offering scalability to accommodate evolving business needs.
    • Combining AI and duplicating datasets: The blending of artificial intelligence (AI) and duplicating datasets is unlocking new possibilities for the IIoT. By creating dataset replicas of physical assets, organizations can simulate, monitor, and optimize operations in real time, driving efficiency and advanced predictive maintenance.
    • Cyber security advancements: As the IIoT expands, cyber security advancements are necessary for safeguarding critical data and infrastructure. Robust measures such as encryption, authentication, and secure protocols are being refined to protect against potential threats.

Challenges in IIoT implementation

The implementation of IIoT comes with its fair share of challenges for industries.

Effectively managing and securing the vast amount of data generated by IIoT devices, for example, is a critical challenge. Organizations must enforce robust data storage, encryption, access control mechanisms, and data governance practices to ensure data integrity and privacy.

Reliable and seamless connectivity between devices, systems, and platforms is also crucial for the success of IIoT implementations. Organizations must address connectivity challenges such as network coverage, latency, and signal interference to ensure uninterrupted data flow.

Additionally, integrating IIoT technology with existing legacy infrastructure can be complex. Compatibility issues, interoperability challenges, and retrofitting requirements must be fully addressed to ensure painless integration and coexistence.

Opportunities in IIoT implementation

The implementation of IIoT presents vast opportunities for businesses, such as:

    • Real-time asset tracking: IIoT allows for real-time tracking of assets throughout the production process, ensuring location visibility and hardware traceability. By monitoring asset location, condition, and usage, organizations can optimize their use of assets, minimize losses, and boost operational efficiency.
    • Quality assurance enhancements: Engaging IIoT technologies such as sensors and data analytics, organizations can enhance quality assurance by continuously monitoring production parameters, deducing anomalies, and minimizing defects.
    • Proactive decision-making: IIoT enables real-time remote monitoring of manufacturing processes, allowing for proactive decision-making, reducing downtime, and optimizing resource allocation. Additionally, IIoT facilitates predictive maintenance by leveraging data from connected devices. By proactively revealing equipment failures and adjusting maintenance requirements, organizations can reduce or eliminate unplanned downtime and optimize maintenance schedules.
    •  IIoT empowers real-time tracking of inventory levels, automating reordering processes, reducing stock outages, and optimizing inventory management practices, leading to improved profits and enhanced customer satisfaction.

Navigating the IIoT landscape presents both challenges and opportunities. As organizations adopt IIoT technologies, they need to address challenges related to secure data storage, connectivity, and integration with legacy infrastructure. However, by overcoming these challenges, organizations can unlock opportunities such as remote monitoring of operations, improved quality control, predictive maintenance, efficient inventory management, and enhanced asset tracking.

Click here for more on seizing the opportunities of the IIoT.

RFID Replaces Bar Codes for Efficient Asset Tracking

Bar code technology has been around for many years and is a tried and true means for tracking asset and product movement, but it has its limitations. For example, a bar code reader must have an unobstructed view of the bar code to effectively scan. And the bar code label cannot be damaged, or it is then unreadable by the scanner.

In more recent years, additional RFID technologies have been more readily available for use to accomplish the same task but with fewer limitations. Using RFD, a scanner may be able to read tags that are blocked by other things and not visible to the naked eye. UHF RFID can scan multiple tags at the same time in a single scan, whereas most bar codes need to be scanned individually. This, therefore, increases efficiency and reduces the time required to perform the scans.

Then, of course, there is the human factor. RFID can help eliminate mistakes caused by human error. Most bar code scanning is done with hand scanners held by workers since the scanner has to be in the exact position to see the bar code to get a good scan. While manual/hand-held scanning can be done using RFID, most times a fixed scanner can be used as long as the position of the RFID tag can be guaranteed within certain tolerances. These tolerances are much greater than with a bar code scanner.

With the advent of inexpensive consumable RFID labels, the ease and cost of transitioning to RFID technology has become more feasible for manufacturers and end users. These labels can be purchased for pennies each in rolls of several thousand at a time.

It should be noted that several companies now produce printers that can actually code the information on a RFID label tag while also printing data, including bar codes, on these label tags so you have the best of both worlds. Tags can be scanned automatically and data that can be read by the human eye as well as a bar code scanner.

Some companies have expressed concern about the usage of RFID in different countries due to local regulations regarding the frequencies of radio waves causing interferences.

This is not an issue for HF  and UHF technology. HF is an ISO standard (ISO 15693) technology so it applies to most everywhere. For UHF, which is more likely to be used due to the ability to scan at a distance and scan multiple tags at the same time, the only caveat is that different areas of the world allow scanners to only operate in certain frequencies. This is overcome by the fact that almost all UHF tags that I have encountered are what are called global tags.

This means these tags can be used in any of the global frequency ranges of UHF signals. For example, in the North America, the FCC restricts the frequency range for UHF RFID scanners to 902-928 MHz, whereas MIC in Japan restricts them to 952-954 MHz, ETSI EN 300-220 in Europe restricts them to 865-868 MHz, and DOT in India restricts them to 865-867 MHz. These global tags can be used in any of these ranges as they work from 860 to 960 MHz.

On the subject of UHF, it should be mentioned that in addition to the frequency ranges restricted by various part of the world, maximum antenna power is also locally restricted.

For more information on RFID for asset tracking, visit https://www.balluff.com/local/us/products/product-overview/rfid/

 

Why RFID is the VIP of 2019

The “most popular” annual lists don’t usually come out until the end of the year, but I think it is worth mentioning now three applications that have gained substantial momentum this year. With the Smart Factory concept being driven around the globe, RFID has emerged from the shadows and taken its place in the spotlight. The demand for a larger amount of data, more security, and increased visibility into the production process has launched RFID into a leading role when it comes to automation.

Machine Access Control

When considering RFID being utilized for access control, they think about readers located near doorways either outside the building or within the plant. While those readers operate much like the industrial readers, they typically cannot communicate over an industrial communication protocol like Ethernet/IP, Profinet, or IO-Link.  With an industrial access control reader one can limit access to HMIs, PLCs, and various control systems by verifying the user and allowing access to the appropriate controls.  This extra layer of security also ensures operator accountability by identifying the user.

Machine Tool ID

RFID has been used in machining centers for decades. However, it was used mostly in larger scale operations where there were acres of machines and hundreds of tools. Today it’s being used in shops with as few as one machine. The ROI is dependent on the number of tool changes in a shift; not necessarily just the number of machines and the number of tools in the building. The greater the number of tool changes, the greater the risk of data input errors, tool breakage, and even a crash.

Content verification

Since RFID is capable of reading through cardboard and plastic, it is commonly used to verify the contents of a container. Tags are fixed to the critical items in the box, like a battery pack or bag of hardware, and passed through a reader to verify their presence. If, in this case, two tags are not read at the final station then the box can be opened and supplied with the missing part before it ships. This prevents an overload on aftersales support and ensures customers get what they ordered.

While RFID is still widely used to address Work in Process (WIP), asset tracking, and logistics applications, the number of alternative applications involving RFID has skyrocketed due to an increase in demand for actionable data.  Manufacturing organizations around the world have standardized on RFID as a solution in cases where accountability, reliability and quality are critical.

 

What does that “Ready for IIoT” tag really mean?

These days almost every smart industrial device that comes to the market is advertised as “ready for IIoT.” But what does it actually mean? Before we get too technical, we should look at what the objectives are for IIoT and why it is important to the industrial age of our time.

In a previous post, “The promise of the Industrial Internet of Things (IIoT)“, we highlighted features such as Virtual IP address, to help address several things that plant maintenance and management would like to achieve. This blog touches those topics in a different perspective.

The concept of the Industrial Internet of Things (IIoT), or Industry 4.0, applies to the future of industrial automation, and these concepts heavily rely on the interoperability of a wide variety of devices and systems that communicate large amounts of data. This data is important because IIoT promises superior efficiency of machines and personalized manufacturing. Personalized manufacturing – also known as micro batch production or lot size one – means connecting with the customers at an individual level rather than connecting to masses. If efficiency and customization in production are the end goals or prime objectives for IIoT, these questions must be answered: What type of data would be necessary? Where and how is that data obtainable? In other words, what are the capabilities or characteristics of the device or system that really qualify as being “ready for IIoT”? Does simply providing an Ethernet connection to the device or adding a webserver qualify the device for IIoT? The answer is NO!

In my opinion, the following 5 key characteristics/capabilities, depending of course on the end user’s objectives, would qualify for being “ready for IIoT” tag.

If an end-user of automation wants to run the plant efficiently, the device or system should be able to provide information regarding; (1) Condition Monitoring, and (2) Automatic Parameterization

  1. Condition Monitoring enables predictive maintenance and eliminates unplanned downtime. Is the PLC or automation controller the right place for determining predictive maintenance? Maybe not. The PLC should focus on making sure the system is running effectively. Adding more non-application related stuff to the PLC may disrupt what is truly important. In most cases you would need a different PC or server to do this pattern analysis throughout the plant. A system or device with the “ready for IIoT” tag should be able to collect and provide that information to a higher level controls system/server. An example would be a power supply with IO-Link. Through the IO-Link master it tells the system about the stress or ambient temperature and predicts its lifetime.
  2. Automatic configuration or parameterization of sensors and systems. This feature enables plug-n-play benefit so that replacing devices is easy and the system automatically configures the replaced device to reduce downtime.

As IT and Controls Engineering work closer together, there are other characteristics of the devices that become important.

  1. Configurability of sensors and production line beyond controller of the system: Automation controllers in use today have physical limits of memory and logic. Today manufacturers are running multiple batches of different products on the same line which means more change over and more downtime. If the devices could allow for quick line change configurations such as set point changes for your sensors, different pressures on fluids, different color detections for the parts or even the ability to provide you with detection of the physical format change, that would significantly reduce your changeover times. In a PLC or controller, you can only build logic for factors known today (for ex. the number of configurations), but in the near future there will be additional product configurations. To be truly ready for the IIoT, you need devices that can be configured (with proper authorizations) in multiple ways. A webserver might be one of the ways – but that also has its limitations. Simple Network Management Protocol (SNMP) is widely used with several of the network management software tools in the IT world. OPC UA is another open communication protocol in industrial space. JSON is a protocol for cloud interface among many others. A device that can offer connectivity, via SNMP, OPC UA, JSON or other such open formats, to connect to other network software tools to gather information or configuration would solve several of these challenges without burdening the existing PLC or controller logic. In other words, these types of interfaces can connect your machine directly to an MRP or similar enterprise-level system which would make production floors much more efficient for quick changeovers.
  2. Capability for asset tracking, and quick troubleshooting: These features become important when there are hundreds of parameters changing and configurations evolving as your system becomes smarter and more efficient. To ensure right things are happening down the line, error-proofing your system becomes essential, and this involves additional information tracking. So the systems or solutions you choose should have these features.
  3. Scalability for the future: This characteristic can be interpreted in many different ways. But, in this blog it refers to adding features and functions as the need arises and building in capability to adapt to these changes is needed so that you are not starting from scratch again when the business needs to evolve again.

So, as we move into this new era of manufacturing, it is important to understand what the “ready for IIoT” tag on the device you are investing in means, and how it is helping you become more efficient or helping you connect to your customer one-on-one. Using IIoT to implement an ‘Enable and Scale’ plan would be the best way to meet the ever-evolving needs for the plant floor.

To learn more about IIoT and Industry 4.0 visit www.balluff.us.

RFID – Keep it Simple!

traceabilityMost of us drive an automobile and use a PC daily. However, very few of us could accurately describe the intricate details of how each of those work. They help us get to work and help us do our work. There is not a need for us to know and understand the algorithm that allows us to compose and save an excel spread sheet. As well, there is not much use in knowing the coefficient of friction when using snow tires compared to standard tires. While those factors play a major role in the tools we use every day, we do not necessarily need to be an expert or scientist to reap the benefits.

Much like a car or PC, RFID systems enable us to be more efficient and productive. Specifically, RFID systems in manufacturing enable full visibility into the process. RFID technology provides actionable data to an organization. Having access to actionable data allows an organization to make critical business decisions with a great degree of confidence. Essentially, it takes the guess work out of the process.

So, how does it work? Very simply, a reader reads the information that has been written to the memory of a tag. Yes, it is that simple.

Check out this webex sponsored by SME. This is a very basic introduction to RFID and how it is used in manufacturing.
https://smeweb.webex.com/smeweb/lsr.php?RCID=c517f86066227766f9e36668c2325aa8

Asset Tracking – Top 10

The goal of plant-based asset tracking is to reduce non-productive time and asset losses, while increasing overall productivity and utilization by accurately tracking assets. Bar code and RFID technologies track changes to an asset’s location, condition, conformity status, and availability.

Balluff has been in this business for over 25 years. Based on that experience, we have compiled the top 10 list of commonly tracked plant-based assets:

1. Dunnage containers
2. Machine tools
3. Plant-floor Equipment
4. Stamping dies
5. Torque Wrenches
6. Plastic Molds
7. Storage tanks and vessels
8. IT equipment
9. Automated Guided Vehicle (AGV)
10. Modular automation sub-systems

If you are looking to gain tighter control of your assets, visit www.balluff.us

tool-room_060412