IMTS 2016 Review: IO-Link Enables Industry 4.0 Installations

We have been talking about IO-Link for a long time.  The benefits to manufacturers like “hot-swapping” a smart device.  One of the benefits for machine builder is reducing commissioning time.  So it was not surprising to me to find IO-Link on the exhibit floor at IMTS 2016, but it was surprising how much IO-Link was used on equipment and demonstrations.

Makino IO-Link I/O Hubs

On a cool demo of robotic load and unload of two machining centers from the team at Makino Machine IO-Link was used for I/O applications driving solenoids and collecting sensor inputs.

What is neat about I/O hubs regardless of the brand is the ability to collect many simple discrete sensor inputs and drive outputs over one IO-Link channel.  It can save tim dramatically over traditional hardwired applications.

Beckhoff IO-Link Master for EtherCAT

Beckhoff IO-Link Master for EtherCAT

Molex IO-Link Inter-operability

At Beckhoff they were showing their IO-Link master options for a slice in the PLC.

Molex displayed their Profinet IO-Link master and slave devices like analog converter and digital I/O hubs.  What I liked about their demo is they showed how open and easy the IO-Link technology is to integrate other company’s devices like the Balluff SmartLight.

Klingelnberg IO-Link

In the Klingelnberg booth on one of their flagship machines IO-Link masters and SmartLight were installed on the machine. IO-Link inductive positioning Smart Sensors from Balluff were used for measurement of the chucking position.

And inter-operability was also shown with multiple manufacturer’s process sensors with IO-Link installed tied back to a Profinet master.  Since IO-Link is an open standard with over 90 automation vendors, it was nice to see the inter-operability in action.

Caron Eng Demo of SmartLight

The SmartLight was shown all over the IMTS show due to Caron Engineering’s easy integration into a PC without an industrial network.  Too many booths to name had the SmartLight integrated with the Caron IO-Link Master solution.

The fact that IO-Link can be used with multiple master interfaces and options, really makes it an easy to select and universal choice for a variety of applications.

 

I look forward to seeing what unfolds in the two years before the next IMTS show.  I anticipate there will be a dramatic and continued adoption of IO-Link as it enables and scales Industry 4.0 and IIoT applications.

To see more or join the conversation check out #IMTS2016 on Twitter.

Posted in All posts, Industrial Networking, IO-Link | Tagged , , , , , , | Leave a comment

Proximity Sensor Switching Distances

operating-distance

Diagram showing the relationship between the various operating distances of an inductive proximity sensor.

When looking at a data sheet for an inductive proximity sensor, there are usually several different specifications listed with regard to the switching distance (or operating distance). Which of these various specifications really matter to someone trying to use a prox sensor in a real-world application? How can a specifier or user decide which sensor is going to work best in their situation?

Fortunately, there is an international standard that defines sensor switching distances and spells out test methods to assure that sensor specifications from product to product and even manufacturer to manufacturer can be directly compared “apples to apples.”

This standard is IEC 60947-5-2 Low voltage switchgear and controlgear – Part 5-2: Control circuit devices and switching elements – Proximity switches.

Operating (switching) distance s

In the diagram shown here, the letter “s” refers to a given sensor specimen’s actual switching distance when tested.  It is defined as the distance (between the standard target and the sensing face of the proximity switch) at which a signal change is generated. For a normally open sensor, the target approaches the sensor axially, that is, the sensor approaches the active surface from the front (not the side). There are several subscripts used to describe different aspects of a sensor’s switching behavior.

Rated operating distance sn

… is the nominal switching distance of the sensor. It is simply used as a standard reference value. The rated operating distance is the best figure to use when comparing different sensor models to get an idea of their essential sensing distance capabilities.

Effective operating distance sr

…is the range of actual switching distances that any given proximity sensor will fall into when measured under specified conditions of mounting, temperature, and supply voltage. For well-designed and manufactured sensors, the sensor will be triggered between 90% and 110% of the rated operating distance. For example, various samples of a proximity sensor model with a rated operating distance (sn) of 8mm may deliver switch-on points anywhere between 7.2mm and 8.8mm.

Usable operating distance su

…takes into account the effects of the sensor’s full ambient temperature range (low to high) and variation of the supply voltage from 85% to 110% of the nominal voltage rating. The IEC standard requires the usable operating distance (su) to be between 90% and 110% of the effective operating distance (sr). For our example of a sensor with a rated operating distance (sn) of 8mm, the usable operating distance would fall between 6.5mm and 8.8mm. Pop quiz: why is the max of usable operating distance not 9.7mm (sr of 8.8mm * 110%)? Answer: the usable operating distance can always be less than but can never be greater than the maximum effective operating distance.

Assured operating distance sa

This is the distance of the target to the sensor where the sensor can be guaranteed to have turned on. If a target approaches within the assured operating distance, you can be confident that the sensor will detect it.  It is 90% of sr which is in turn 90% of sn, which is in effect 81% of sn. Going back to our example of a sensor with a rated operating distance (sn) of 8mm, sa would be 81% * 8mm = 6.5mm. So in essence, sa = su(min).

Differential travel H

Now when the target recedes, at what distance will the sensor switch off? All good-quality sensors have a built-in property called hysteresis, which means that the sensor will turn off when the target is further away from the sensor than the point where it turns on. This is necessary to prevent chattering and instability when the target approaches the sensor. We want the sensor to turn on and stay on, even if the target might be vibrating as it crosses the threshold of detection. For most sensors, it is defined as ≤ 20% of the effective operating distance sr. The differential travel is added to the value of sr to define the switch-off point.

In practice, for any group of sensors, the minimum value of H would be zero and the maximum value would be sr(max) + 20% of sr(max). For our example of a sensor with a rated operating distance (sn) of 8mm, 7.2mm ≤  sr  ≤ 8.8mm. So, the range of switch-off points would be 7.2mm ≤  sr+H  ≤ 10.6mm. It might sound like a large range, but for any given sensor specimen the switch-off point is never greater than 20% of that particular sensor’s switch-on point.

Conclusion

The good news is that you don’t have to conduct sensor tests yourself or go through all of these calculations manually to determine a sensor’s performance envelope. The sensor manufacturer provides all of these useful figures pre-calculated for you in the sensor data sheet.

Learn more about the basics of the most popular automation sensor here.

You can also learn more about other topics by visiting balluff.us/basics.

Posted in All posts, Inductive Proximity Sensors, Object Detection Sensors | Tagged , , , , , , , , | Leave a comment

Three Things to Know About IO-Link

IO-Link has become synonymous with the term “distributed modular I/O”. We know it is universal, smart, and easy, but what exactly is IO-Link? In a nutshell, by utilizing a standard sensor cable, the IO-Link slave device speaks point to point with an IO-Link master. The IO-Link master then combines the data with other IO-Link slave devices and communicates over an industrial network or backplane to the controller. In other words, it can be compared to a simple USB connection: for the most part, any USB device will work in any USB port, as long as the manufacturers of both devices have played by the rules when making the devices.

With that being said, here are three things to know about IO-Link:

  • Cable Length Cable Type and Length

Cable runs between master and slave can be up to 20 meters in length and typically utilize standard automation cables. Most cables, but not all, are M12 A-coded, unshielded, 3 or 4-conductor DC sensor cables.

  • Star ArchitectureStar Architecture

Since IO-Link utilizes a point-to-point serial communication, Star Topology is the only device architecture that can be constructed.

  • IO-Link PortsPort Class A vs Port Class B Devices

While most devices utilize IO-Link port Class A, output devices like valves are now being offered as IO-Link port Class B. Be sure to know if the master and/or slaves are Class A or Class B type ports. Most Balluff devices are IO-Link port Class A.

To learn more visit balluff.us/iolink

Posted in All posts, Industrial Networking, IO-Link | Tagged , , , | 1 Comment

A Simple Out Feed Solution for Progressive Stamping

Applications where sensor contact is unavoidable are some of the most challenging to solve. Metal forming processes involving over travel can also damage or even destroy a sensor causing failure and expensive unplanned downtime. Manufacturers often try to remedy this with in-house manufactured spring loaded out-feed mechanisms but those are expensive to make by experienced tool and die personnel who have more important things to do . Over the years, I’ve seen this as a pervasive problem in the stamping industry. Many of these issues can be solved with the use of a simple yet effective  sensor actuator system known as a Balluff PlungerProx.

PlungerProx solves a few key issues in Progressive stamping:

  • The flexible trigger/actuation point is fully adjustable to meet sensitive or less sensitive activation points, not possible with “fixed” systems with substantial “over travel” built into the design.
  • It is fully self-contained (minimizing any risk of sensor damage and resulting unplanned machine down time).
  • The device can be disassembled and rapidly cleaned, reassembled, and placed back in service in the event that die lube or other industrial fluids enter the M18 body that can potentially congeal during shut down periods.

See me demo this product in the following video:

For more information visit www.balluff.us.

Posted in All posts, Inductive Proximity Sensors, Object Detection Sensors | Tagged , , , , , , , , | Leave a comment

The Importance of Data Accessibility with IIoT

20160809_100331 (1) Typically a college student is asked two questions: “What are you studying?” and “What would you like to do with your degree?” In my case, I always answer with “Computer Science” and “I have no idea”. Lately, the field that has grabbed my interest the most is the Internet of Things (IoT). The concept of data transfer and communication between ordinary utilities is going to revolutionize the way we go about our day to day tasks. Home automation is a key example of this. We have found ways to expedite those pesky tasks that nobody enjoys doing by simply automating them.

I’ve come to realize that there is data everywhere; we just need to take the opportunity to use it. I’ve done this in a few small side projects around my apartment. Is the door locked? Are my lights on? Did the refrigerator door completely close? These are all examples of data that is useful to me at any point in time. The trick is making it available. Using a low power microcontroller and a few sensors, I’m able to host this data and view it at any point in time. IoT has the capability of effectively improving our energy efficiency, security, and productivity simply by making data readily available.

IoT screenLikewise, these same concepts apply to industrial automation. I’ve spent the last few months developing a web application to demonstrate Industrial Internet of Things (IIoT).  The web app simply hosts a live feed of data from a conveyor system. From any computer on the network, we can see crucial data such as conveyor accumulation, sensor status or even maintenance needs.  Once this data is made available, we can even automate the analysis. For example, on a conveyor, we can look at the number of packages that go by every day. A simple script that increments by one for every passing object can give a very accurate representation of day to day productivity. More intense algorithms could analyze trends in mass quantities of data return valuable results. All of this is done simply by making data continuously accessible.

According to Business Insider, by 2020, there will be 34 billion devices connected to the internet and that there will be $6 trillion spent on incorporating and integrating IoT.  As a student with a passion for technology, I see a lot of potential in this field.  So next time I’m asked what I plan on doing with my degree, I might say an IoT developer. It’s a fascinating subject that only has room to grow.

To learn more about IIoT visit www.balluff.us.

Posted in All posts, Industrial Networking | Tagged , , , | Leave a comment

Machine Tool Identification with RFID -Automation for Advanced Machining

When most people think of automation in manufacturing the first thing that comes to mind is usually a robot. Without a doubt, robots play an integral part in automating the production process, and let’s face it they are pretty cool. However, there is an often overlooked topic in the automation discussion and that is Automatic Data Collection (ADC), which includes barcode and RFID technology. While it doesn’t carry the “cool factor” quite as well as robotics, RFID has helped automate manufacturing, specifically machining, over the last 30 years.

How is it used?

An RFID tag is placed in the tool holder and stays put for the life of the tool. The tag essentially acts as a mini database that can be read and written to thousands of times.

What type of data is typically written to the tag?

Tool Life, Tool Chain Pocket location, Offset Data, Maintenance Info, etc. Up to 2K of info can be written and read and erased and written again. In addition, this information can be updated on the spot.

What are the benefits of using RFID in Machine Tools?

RFID Improves Quality, Increases Efficiency, and Reduces overall Costs by:

Maximizing Tool and Machine Utilization

  • Precise up-to-date tool life information
  • Accurate transfer of tool offset data
  • Continuous tracking of the tool

Minimizing Human Error

  • Eliminates human data entry
  • Automates transfer of data from presetter to machine
  • Data can be accessed directly on the plant floor as opposed to a database lookup

ToolIDRFID is a tried and true technology that will continue to have a great impact on the machining process. Organizations all over the globe are saving millions every year by utilizing this simple method of collecting and transferring data. Machine tool ID is a no-brainer when quality, efficiency, and productivity matters!

For more information or to learn more visit www.balluff.us/rfid.

Posted in All posts, Industrial Identification, Industrial RFID Systems | Tagged , , , , , , | Leave a comment

To OCV, or OCR, that is the question

VisionOWLTo OCV, or OCR: that is the question:
Whether ’tis nobler to use OCV (Optical Character Verification) to verify print,
Or OCR (Optical Character Recognition) to decode a sea of print troubles.
And by decoding will turmoil end?
No more to have the camera sleep; we program the TTL (Time to Live)
That font won’t print correctly, ’tis a communication issue?
The undiscover’d font no longer puzzles the will as I can check with OCV.

OCR in Machine Vision software has a library of numbers, letters, fonts, and special characters. Sometimes print is not readable when quality checked using the ISO 1831:1980 specification library. Fortunately, we can teach printed characters utilizing OCV. To verify the quality of print, it can be graded following the ISO 15415,15416 AIM DPM-1-2006/ISO29158 standard. This standard also checks print quality when 1D or 2D barcodes are read.

Hence, methinks even Shakespeare would be impressed by modern-day OCV and OCR technology.

To learn more about machine vision visit www.balluff.us/vision.

Special thanks to Diane Weymier-Dodd for her contribution to this post. 

Posted in All posts, Industrial Identification, Machine Vision | Tagged , , , , , , | Leave a comment

Industry 4.0 & IIoT, who cares?!?! You should.

(If you aren’t sure what Industry 4.0 or IIoT (Industrial Internet of Things) are, take a look at these previous blog entries.)

I’m amazed at all the research published each week presenting the value Industry 4.0 and IIoT are bringing to manufacturing.  And the articles about Industry 4.0 and IIoT are not just in industry rags, there are mainstream publications like Fortune & Forbes who are aware of and presenting the power of Industry 4.0 to the masses.

But why should anyone even care?

Looking backwards a decade, no one should be surprised that an explosion of data has occurred.  In 2013 the IMS found the Compound Annual Growth Rate (CAGR) of Ethernet-based automation components was 16.4 percent in 2012.  It was outpacing fieldbus growth dramatically in every category and predicted strong CAGR through 2016.  And taking a look forward provides just as exciting an outlook in the global industrial Ethernet market as Technavio is expecting growth at a CAGR of more than 15% for 2016 through 2020!

industry4.0-2So as I look at the economic effects of IIoT, Morgan Stanley sees: investments in the automation industry are expected to grow at a faster pace than the GDP, capital budgets for IIoT type investments will grow 18% and greater than 70% of respondents believe IIoT is an important strategy for their company.  And with 73% of companies investing more than 20% of their technology budget on Big Data analytics and growing, this trend toward Industry 4.0 does not seem to be letting up.

But why are manufacturer’s making these investments?

This infographic really summarizes well how I feel our situation in the US today is laid out.

Infographic

We need upgrades and investment in US manufacturing infrastructure.  And to remain successful we need to improve production efficiency and evolve towards flexible manufacturing processes.  In a recent survey from SCM World the benefits of Smart Manfucaturing and can provide a 48% reduction in unplanned downtime from IIoT solutions. WOW!  Can you imagine the kinds of investments we could make if we weren’t throwing our money into the downtime fire?  In this same survey close to two thirds of respondents said they are ready now or will be in 5 years for implementation of IIoT solutions.

The kind of focus and growth I’m reading about every week is driving investments and benefits for all stakeholders in manufacturing and it would be smart to take a look at where your company stacks up.

If you are interested in seeing how Balluff enables & scales Industry 4.0 and IIoT, visit our website at www.balluff.us.

Posted in All posts, Industrial Networking | Tagged , , | 1 Comment

Level Detection Basics – Where to begin?

Initially I started to write this blog to compare photoelectric sensors to ultrasonic sensors for level detection. This came to mind after traveling around and visiting customers that had some very interesting applications. However, as I started to shed some light on this with photoelectrics, sorry for the pun but it was intended, I thought it might be better to begin with some application questions and considerations so that we have a better understanding of the advantages and disadvantages of solutions that are available. That being said I guess we will have to wait to hear about ultrasonic sensors until later…get it, another pun. Sorry.

Level detection can present a wide variety of challenges some easier to overcome than others. Some of the questions to consider include the following with some explanation for each:

  • What is the material of the container or vessel?
    • Metallic containers will typically require the sensor to look down to see the media. This application may be able to be solved with photoelectrics, ultrasonics, and linear transducers or capacitive (mounted in a tube and lowered into the media.
    • SmartLevelNon-metallic containers may provide the ability for the sensors look down to see the media with the same technologies mentioned above or by sensing through the walls of the container. Capacitive sensors can sense through the walls of a container up to 4mm thick with standard technology or up to 10mm thick using a hybrid capacitive technology offered by Balluff when detecting water based conductive materials. If the container is clear or translucent we have photoelectric sensors that can look through the side walls to detect the media. You can get more information in our white paper, SMARTLEVEL Technology Accurate point level detection.
  • What type of sensing is required? The short answer to this is level right? However, there are basically two different types of level detection. For more information on this refer to the Balluff Basics on Level Sensing – Discrete vs. Continuous.
    • Single point level or point level sensing. This is typically accomplished with a single sensor that allows for a discrete or an on-off signal when the level actuates the sensor. The sensor is mounted at the specific level to be monitored, for instance low-low, low, half full (the optimistic view), high, or high-high. These sensors are typically lower cost and easier to implement or integrate into the level controls.
    • Example of in-tank continuous level sensor

      Example of in-tank continuous level sensor

      Continuous or dynamic level detection. These sensors provide an analog or continuous output based on the level of the media. This level detection is used primarily in applications that require precise level or precision dispensing. The output signals are usually a voltage 0-10V or current output 4-20mA.  These sensors are typically higher cost and require more work in integrating them into system controls.  That being said, they also offer several advantages such as the ability to program in unlimited point levels and in the case of the current output the ability to determine if the sensor is malfunctioning or the wire is broken.

Because of the amount of information on level detection this will be the first in a series on this topic. In my next blog I will discuss invasive vs non-invasive mounting and some other topics. For more information visit www.balluff.us.

Posted in All posts, Level Sensing, Liquid Level Sensing | Tagged , , , , , , , , , , | Leave a comment

Predictive Maintenance for Zen State of Manufacturing

Industry4.0In a previous entry, Mission Industry 4.0 @ Balluff, I explained that the two primary objectives for Balluff’s work in the area of Industry 4.0 are to help customers achieve high production efficiencies in their  automation and achieve  ‘batch size one’ production.

There are several levers that can be adjusted to achieve high levels of manufacturing efficiencies in the realm of IIoT (Industrial Internet of Things). These levers may include selecting quality of production equipment, lean production processes, connectivity and interoperability of devices, and so on. Production efficiency in the short term can be measured by how fast row materials can be processed into the final product – or how fast we deliver goods from the time the order comes in. The later portion depends more on the entire value-chain of the organization. Let’s focus today’s discussion on manufacturing – inside the plant itself.  The long-term definition of production efficiency in the context of manufacturing incorporates the effectiveness of the production system or the automation at hand. What that means is the long-term production efficiency involves the health of the system and its components in harmony with the other levers mentioned above.

The Zen state of manufacturing – nothing important will come up on Google for this as I made this phrase up. It is the perfect state of the entire manufacturing plant that continues production without hiccups all days, all shifts, every day. Does it mean zero-maintenance? Absolutely not, regular maintenance is necessary. It is one of those ‘non-value added but necessary’ steps in the lean philosophy.  Everyone knows the benefits of maintenance, so what’s new?

Well, all manufacturing facilities have a good, in some cases very strictly followed maintenance schedule, but these plants still face unplanned downtimes ranging from minutes to hours. Of course I don’t need to dwell on the cost associated with unplanned downtime. In most cases, there are minor reasons for the downtime such as a bad sensor connection, or cloudy lens on the vision sensor, etc. What if these components could alert you well in advance so that you could fix it before they go down? This is where Predictive Maintenance (PdM) comes in. In a nutshell, PdM uses actual equipment-performance data to determine the condition of the equipment so that the maintenance can be scheduled, based on the state of the equipment. This approach promises cost savings over “time-based” preventive maintenance.

PowerSuppliesIt is not about choosing predictive maintenance over preventive maintenance. I doubt you could achieve the Zen state with just one or the other. Preventive and predictive maintenance are both important – like diet and exercise. While preventive maintenance focuses on eliminating common scenarios that could have dramatic impact on the production for long time, predictive maintenance focuses on prolonging the life of the system by reducing costs associated with unnecessary maintenance.  For example, it is common practice in manufacturing plants to routinely change power supplies every 10 years, even though the rated life of a power supply under prescribed conditions is 15 years. That means as a preventive measure the plants are throwing away 30% life left on the power supply. In other words, they are throwing away 30% of the money they spent on purchasing these power supplies. If the power supplies can talk, they could probably save you that money indicating that “Hey, I still have 30% life left, I can go until next time you stop the machine for changing oil/grease in that robot!”

In summary, to achieve the zen state of manufacturing, it is important to understand the virtues of predictive maintenance and condition monitoring of your equipment. To learn more visit www.balluff.us.

Posted in All posts, Industrial Networking | Tagged , , , , , , , | Leave a comment