Sensors Reduce Downtime in Welding Applications

Sensors in welding cells are subject to failure because, although they are intended to be non-contact devices, they tend to be located directly in the middle of the welding process. Conditions such as damage by direct mechanical impact, erosion by hot welding slag, false tripping by accumulated slag, and high intermittent heat cause conventional sensors to fail at an excessive rate. In a previous blog post we discussed our three-step protection process.

bunkerproxProperly bunkering and protecting sensors will prolong their service life and reduce downtime. Ideally, this strategy is implemented during the design and construction of the weld cell by the equipment builder in response to buyer demands for increased process reliability. But what about currently existing production equipment that originally was built to a lower standard that is plagued with issues? It can be very difficult for a plant to find the time and personnel resources to go back and address problematic applications with better sensor mounting solutions. The job of retrofitting an entire weld cell with proper sensor protection can take two experienced people up to eight hours or more.

The self-bunkering proximity is a new kind of rugged welding sensor concept. A self-bunkering proximity is a sensor with a super-robust housing and other rugged features designed to protect the sensor from physical damage in the application— recessed sensing coil, impact deflection ring, ceramic sensing face, and weld field immune electronics. Such a sensor can combat sensor failure, eliminating unnecessary sensor changes.

Over time, the cost of replacing standard sensors, machine downtime, loss of production, scrap, and maintenance labor cost will far exceed the initial expense of a self-bunkering proximity sensor. While the majority of inductive proximity sensors work well for general purpose applications, self-bunkering sensors allow highly reliable sensing performance in applications where conventional sensors fall short.

For information on self-bunkering proximity sensors, click here, or check out this article from Design World Magazine.

About Shawn Day

Balluff Inc. Market Manager ~ Object Detection
This entry was posted in All posts, Inductive Proximity Sensors, Object Detection Sensors and tagged , , , , , , , , . Bookmark the permalink.

What do you think?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s