High Pressure Inductive Sensors with Analog Feedback

In my previous blog post we covered the Anatomy of a High Pressure Proximity Sensor. That post covered the different mechanical housing designs and special properties that go into high pressure sensor products with discrete outputs. That is great information to know when specifying the correct sensor for a particular application. In today’s competitive market and constant goals to improve processes, sensor’s that offer continuous feedback are required.

Hydraulic systems regulate speed of an actuator by regulating flow rate. The flow rate determines the speed of the cylinder spud that actuates inside the system. For example, an analog sensor can provide measurement to the controls with indication of slowing down or speeding up the actuator based on the analog feedback from the sensor in regard to position of the tapered section of the actuator. So, if the internal target gets larger with more position movement (stroke) the distant measurement changes and indicates that the end of stroke is near causing the controller to initiate a soft stop. This provides better control of the system offering a more efficient reliable process.

500barAnalog Inductive sensors provide an absolute voltage or current signal change proportional to the distance of a ferrous target. In high pressure applications that require more position feedback, an analog distance sensor can offer a solution as they also offer high – strength stainless steel housings with special sealing designs that allow pressure up to 500 bar and 85°C temperature ratings making them an ideal solution for valve speed control and soft starts with a non – contact design.

More information on high pressure analog inductive sensors is available on the Balluff website at www.balluff.us.

About Shawn Day

Balluff Inc. Market Manager ~ Object Detection
This entry was posted in All posts, Inductive Proximity Sensors, Object Detection Sensors and tagged , , , , , , . Bookmark the permalink.

What do you think?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s