Level Detection Basics – Where to begin?

Initially I started to write this blog to compare photoelectric sensors to ultrasonic sensors for level detection. This came to mind after traveling around and visiting customers that had some very interesting applications. However, as I started to shed some light on this with photoelectrics, sorry for the pun but it was intended, I thought it might be better to begin with some application questions and considerations so that we have a better understanding of the advantages and disadvantages of solutions that are available. That being said I guess we will have to wait to hear about ultrasonic sensors until later…get it, another pun. Sorry.

Level detection can present a wide variety of challenges some easier to overcome than others. Some of the questions to consider include the following with some explanation for each:

  • What is the material of the container or vessel?
    • Metallic containers will typically require the sensor to look down to see the media. This application may be able to be solved with photoelectrics, ultrasonics, and linear transducers or capacitive (mounted in a tube and lowered into the media.
    • SmartLevelNon-metallic containers may provide the ability for the sensors look down to see the media with the same technologies mentioned above or by sensing through the walls of the container. Capacitive sensors can sense through the walls of a container up to 4mm thick with standard technology or up to 10mm thick using a hybrid capacitive technology offered by Balluff when detecting water based conductive materials. If the container is clear or translucent we have photoelectric sensors that can look through the side walls to detect the media. You can get more information in our white paper, SMARTLEVEL Technology Accurate point level detection.
  • What type of sensing is required? The short answer to this is level right? However, there are basically two different types of level detection. For more information on this refer to the Balluff Basics on Level Sensing – Discrete vs. Continuous.
    • Single point level or point level sensing. This is typically accomplished with a single sensor that allows for a discrete or an on-off signal when the level actuates the sensor. The sensor is mounted at the specific level to be monitored, for instance low-low, low, half full (the optimistic view), high, or high-high. These sensors are typically lower cost and easier to implement or integrate into the level controls.
    • Example of in-tank continuous level sensor

      Example of in-tank continuous level sensor

      Continuous or dynamic level detection. These sensors provide an analog or continuous output based on the level of the media. This level detection is used primarily in applications that require precise level or precision dispensing. The output signals are usually a voltage 0-10V or current output 4-20mA.  These sensors are typically higher cost and require more work in integrating them into system controls.  That being said, they also offer several advantages such as the ability to program in unlimited point levels and in the case of the current output the ability to determine if the sensor is malfunctioning or the wire is broken.

Because of the amount of information on level detection this will be the first in a series on this topic. In my next blog I will discuss invasive vs non-invasive mounting and some other topics. For more information visit www.balluff.us.

This entry was posted in All posts, Level Sensing, Liquid Level Sensing and tagged , , , , , , , , , , . Bookmark the permalink.

One Response to Level Detection Basics – Where to begin?

  1. Pingback: Level Detection Basics – Part 2 | SENSORTECH

What do you think?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s