5 Tips on Making End-of-Arm Tooling Smarter

Example of a Flexible EOA Tool with 8 sensors connected with an Inductive Coupling System.

Example of a Flexible EOA Tool with 8 sensors connected with an Inductive Coupling System.

Over the years I’ve interviewed many customers regarding End-Of-Arm (EOA) tooling. Most of the improvements revolve around making the EOA tooling smarter. Smarter tools mean more reliability, faster change out and more in-tool error proofing.

#5: Go Analog…in flexible manufacturing environments, discrete information just does not provide an adequate solution. Analog sensors can change set points based on the product currently being manufactured.

#4: Lose the weight…look at the connectors and cables. M8 and M5 connectorized sensors and cables are readily available. Use field installable connectors to help keep cable runs as short as possible. We see too many long cables simply bundled up.

#3: Go Small…use miniature, precision sensors that do not require separate amplifiers. These miniature sensors not only cut down on size but also have increased precision. With these sensors, you’ll know if a part is not completely seated in the gripper.

#2: Monitor those pneumatic cylinders…monitoring air pressure in one way, but as speeds increase and size is reduced, you really need to know cylinder end of travel position. The best technology for EOA tooling is magnetoresistive such as Balluff’s BMF line. Avoid hall-effects and definitely avoid reed switches. Also, consider dual sensor styles such as Balluff’s V-Twin line.

#1: Go with Couplers…with interchangeable tooling, sensors should be connected with a solid-state, inductive coupling system such as Balluff’s Inductive Coupler (BIC). Avoid the use of pin-based connector systems for low power sensors. They create reliability problems over time.

Thinking Outside the Cylinder

In a previous entry, I discussed how linear position sensors are used with hydraulic cylinders to provide continuous position feedback.  While this is certainly one of the most common ways linear position sensors are used, there are many applications for linear position sensors that either don’t involve a hydraulic cylinder at all, or that involve a cylinder only indirectly.

Linear position sensors for external use (not installed into a hydraulic cylinder) offer some very tangible benefits when compared to in-cylinder sensors.  Let’s explore a few of those benefits:

Read more of this post

What is the hysteresis of your magnetic field sensor?

Share/Bookmark

I received a call the other day from a customer who wanted to use a magnetic field sensor on a cylinder, and evidently was requiring very precise results. He asked, “what is the hysteresis of your sensors? I notice that it is listed in your catalog as a percentage and I need to know the exact value in millimeters.” My response was, “well it depends”,  upon which he was not overly pleased. I then continued to explain my answer which leads me to the contents of this posting.

Read more of this post

Follow

Get every new post delivered to your Inbox.

Join 4,165 other followers

%d bloggers like this: